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ABSTRACT 

We calculate the next to the leading l/N corrections to the B parameter which 

measures the size of the AS = 2 matrix element (EO 1 (sd)v-A(ad)v-A 1 IP’). 

These corrections turn out to be small which assures the validity of the l/N 

expansion. We find B = 0.70 z!c 0.07 to be compared with the leading order value 

B = 0.75. We clarify the differences between these results and the results of the 

usual chiral perturbative calculations which give / B 1~ l/3 at the tree level but 

appear to signal the breakdown of chiral perturbation theory at the one-loop level. 
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One of the most important parameters in the K-meson system is the so-called 

B parameter which in the standard model measures the size of the If“-&? mixing. 

As such, it plays a crucial role in the evaluation of the KL - KS mass difference 

and in predicting the size of the CP violation present in the standard model. 

The scale independent parameter B is defined by 

B = B(P~)[~P~)~-” 
9(N - 1) 

a = N(llN - 6) 

where o is the QCD running coupling constant, N is the number of colors, p is a 

normalization scale and the function B(p2) is defined as follows 

(i? 1 Q(ji) 1 K’) E (R” ( (hi)V-A(ad)V-,., 1 K”) = B(p2);F&&. (2) 

Here V - A refers to q,,(l - 7s), FK is the kaon decay constant (FK = 120McV) 

and nag is the kaon mass. The second factor on the r.h.s. of Eq.(l) represents 

the p dependence of the Wilson coefficient function associated with the AS = 2 

operator Q(h) in Eq. (2). For N = 3 one obtains the result of ref. [l]. 

Due to the non-perturbative nature of the problem, it was a common practice 

until recently to evaluate B(s2) in simple models which led to a variety of values 

for B ranging from l/3 to 2 (21. Among these the vacuum insertion estimate of 

ref. [3] (B(p’) = 1) and the PCAC - SU(3) estimate of refs. [4,5] (I B (z l/3) 

are the ones best known. 

During the last two years efforts have been made to calculate the parameter 

B in QCD using the l/N expansion [S], the QCD sum rules (7-101 and the lattice 

approach [11,12]. In the leading order of the l/N expansion one finds B = 3/4 

16,131 and a similar value in the quenched version of the lattice QCD (B = 0.7f0.3) 

has recently been obtained 1121. There is still no consensus on the value of B 

resulting from the QCD sum rules. Whereas in ref. [7] the value B = 0.33 has 

been obtained using the two-point functions, in refs. [E-lo] higher values of B(B = 

1.2 f 0.1, B = 0.58 zb 0.16 and B = 0.84 rt 0.08 respectively) have been found on 

the basis of the three-point functions. 

In this letter we will extend the calculation of ref. [S] beyond the leading order 

of l/N expansion using the approach developed in refs. 114,151. In this approach 

the matrix element (R” ] Q(g) ] IP) can be calculated using a truncated chiral 
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Lagrangian describing the low energy strong interactions of pseudoscalar mesons 

(14-161. 

Lt, = $tr(DpuD,u+) + r tr(m(rJ+ II+)) - -+(m(D’U + D%+))] (3) 

where 

u = ezP(wh) , (4) 
a=1 

is the unitary chiral matrix describing the octet of pseudoscalar mesons’). D,,U 

is the usual weak covariant derivative and m is the 3 x 3 real and diagonal quark 

mass matrix. From the structure of this Lagrangian we can read off the consistent 

meson representation of the quark current (sd)v-A: 

(Sd)V-A = i${ p/Jqu+ - u(a,u+) - -$m(w+) - k%+4}d~. (5) 

The leading in l/N contributions to any quantity of interest are obtained simply 

from the tree diagrams whereas the next to leading order corrections are found 

by calculating the one loop contributions. More generally the l/N expansion 

corresponds to the loop expansion characterized by the inverse powers of fi(jz - 

N) with the strong interaction vertices given fully by the truncated Lagrangian 

of Eq. (3). Since we have truncated on the pseudoscalar mesons, the effective low 

energy meson theory describing the strong interactions appears non-renormalizable 

and a physical ultraviolet cutoff, denoted by M, must be introduced in order to 

make the meson loop diagrams finite. In the evaluation of the matrix element 

(BO 1 Q(b) 1 K) we will identify the scale p with the cutoff scale M . The physical 

picture behind our approach has been discussed in detail in ref. [14,15] and the 

present letter constitutes the application to the case at hand. As discussed in 

ref. [15] there are some similarities between our calculations and the usual chiral 

perturbative calculations found in the literature [17). On the other hand there 

exist also important differences and we will return to them at the end of this 

letter. 

I) We neglect the no - ~8 mixing. In this limit, all the ~0 contributions at the 
one loop level turn out to cancel. 



The parameter r can be eliminated in favor of the meson masses 

m~=;(m”+md) , 2 r mK k -mS 
2 

The parameters fs and Ax can be generally expressed in terms of the physical 

pion (F,) and kaon (FK) decay constants (14,151. Using Lt, of Eq. (3) one linds 

in the SU(2) limit : 

FK = f=[l + 9 - if(2 &+n$) + b(d) + &(m$))] 
x * 

Qr=l++m: 
& 

- $-[2&(m$) - 512(m:) + 312(m$j)] 
A$ ? 

(8) 

where 

with M being the physical cut-off of the truncated meson theory. For later pur- 

poses we will also need ZK, the wave function renormalization of the kaon field 

(K;i = .Q2K”) : 

ZK = 1 - :+[2 12(mk) f Iz(mi) + &(m$)]. 
r 

We are now ready to evaluate the parameter B using the l/N expansion ap- 

proach. 

A. Leading Order 

In the leading order the only contribution comes from the tree diagram in Fig. 

1 where the solid square is a two-meson weak vertex representing the AS = 2 

operator Q with the quark current (S&-A given by the leading term in Eq. (5): 

[(sd)V-AlLeading = -fir[~r~ + i$(rn+= + Qrm)]ds. (11) 
X 

A straightforward calculation now gives 

2 

(R” / Q / K”) hoding = 4fz [I + 2?] rn& = 4F’fp~ 
AX 

(12) 
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where in obtaining the last equality the leading order expression for FK (the first 

two terms in Eq. (7)) has been used. Comparing this result with Eq. (2) we 

indeed find 

[%oding = [@)hading = g* 03) 

which agrees with ref. [6] where the leading contribution has been obtained by 

using a modified vacuum insertion method in which the Fierz contributions have 

been set to zero. In obtaining the above result we have used the fact that in the 

strict large N limit a = 0. 

Our result differs substantially from the one obtained in ref. [4] (1 B I= l/3) 

where the matrix element (k” ] Q ] P) has been related to the experimentally 

measured AI = 3/2 amplitude A(K+ + r+n”)‘) by assuming SU(3) symmetry 

and using a soft pion limit. As shown in ref. 15) these approximations correspond to 

the leading order of chiral expansion. Ln our approach this limit (Ax + co, FK = 

Fr = fir.) would also imply a rather small value for B 

(14) 

The remaining difference results from the fact that in our approach [A(K+ + 

?r+?rO)]leadinp = 1.4 [A@+ -+ T+T~)&,. As we have shown in ref. (151 the 

inclusion of l/N corrections makes the amplitude A(K+ 4 x+x0) compatible 

with the data. On the other hand as we will now show the result in eq. (13) is 

rather stable with respect to these corrections. 

B. Next-to-Leading Order 

There are two kinds of one loop diagrams shown in Fig. 2 which contribute in 

the next-tc-leading order to the matrix element (liO / Q ] K’). The diagrams in 

Fig. 2a contain only a four meson weak vertex which can be inferred from Eqs. 

(2) and (5): 

beak uettcz]4 = $&,[T(~,,+ - ;(a,+T2 - ;T2(8&]ds 

2, Note that in the short distance analysis the AS = 2 and AI = 312 op- 
erators have the same anomalous dimensions and consequently the same p- 
dependence.This feature allows an estimate of the H-independent parameter 
B. 



- *k%“)lda@$d” - n(%r)lda* (15) 

The diagrams in Fig. 2b contain in addition to the twemeson vertex of Fig. 1 

also a four-meson vertex from Lt, of Eq. (3): 

[&Jr = $$[tr(x a/p 7r ap7r - 572 ap7r ap) + ; 7 tr(m x4)]. 06) 
r 

The diagrams in which both internal lines originate from the same quark current 

are factorizable. The remaining diagrams are non-factorizable. Clearly all the 

diagrams in Fig. 2b are non-factorizable whereas the inspection of the vertex in 

Eq. (15) shows that Fig. 2a contains both the factorizable and non-factorizable 

diagrams. 

The factorizable diagrams of Fig. 2a together with the leading diagram of Fig. 

1 (also factorizable) give 

lx” I Q I K’)F = 

= 21&l+ 29) - 2 12(m$ - 12(r4) - I,(m2,)j(K” 1 +K06’,K0 ] K’) 
x 

= 2Ff&? ] ($,K“)R(+KO)R ] K’) = 4Ff& (17) 

where we have used Eqs. (7) and (10). W e h ave thus explicitly shown that all 

the factorizable next-to-leading contributions to (K” 1 Q 1 K”) can be absorbed 

into the leading term by using the physical kaon decay constant and the physical 

kaon fields. Note also that the next-to-leading factorizable contributions do not 

contain the usual contribution from the Fiers rearrangement of the AS = 2 quark 

operator as it is a part of the non-factorizable contributions given below. 

The non-factorizable diagrams of Fig. 2a give 

(go 1 Q I K0)~~(2a) = :14(m$) - 314(ma) - 14(mz) - r&[Z2(&) + 312(mi)] 

(18) 
and from Fig. 2b we find 

(I?’ ) Q ) K0)NF(2b) = -$[14(ma, + 3m$I2(m$) + 3rn$&,(m&)]. (19) 



Here the functions 13(m$ and Z4(m$ are defined ss follows 

Idmf) = (2;)' 
& 

(q2-mf)2 = & 
M= 

M2 + m! -In@+ mf ",I. (20) 

and 

14b7G) = (1:)4 I (21) 

The quartic cut-off dependence3 present in Eqs. (18) and (19) cancel each other 

in the sum as required by chiral invariance.3) Adding the next-to-leading contri- 

butions given in Eqs. (18) and (19) to the factorizable contribution of Eq. (17) 

we finally obtain (M* = p2) 

B(p2) = $l- --& 
m2 

(3(1+ +)12(&j) + (I+ - 
K mK 

m,f lI2(4 +4m2K13(mk)ll. (22) 
mK 

This is the main result of our paper which together with Eq. (1) gives the B 

parameter as obtained by calculating the hrst two terms .in the l/N expansion. 

In Table 1 we give B(p2) and B obtained using Eqs. (22) and (1) respectively 

for different values of P = M and Agc~. The p dependent factor multiplying 

B(w2) in Eq. (1) results from the usual QCD renormalization group analysis done 

within the quark picture.4) The very weak JL dependence of B shows that the 

quark and the meson pictures of strong interactions match well as required for the 

consistency of our calculation. We find 

1 

0.73 f 0.03 
i3= 

AQCD = 0.2 GeV 

0.66 l 0.02 AQCD =0.3 GeV (23) 

which implies that the next-to-leading order corrections are small. We also note 

that the main uncertainty comes from the value of AQCD. 

The small next-to-leading corrections to (fi” 1 Q / K’) found by us should 

be contrasted with the large one-loop corrections found in ref. 15). In order to 

3)The additional term usually added to the strong interaction Lagrangian given 
in Eq. (3) to assure the invariance of the mesaure (see ref. [18]) does not 
contribute to I3 at the one loop level. 

4)In our numerical calculations we have used the large N limit for a of Eq. (1) 
(i.e. a = 3/11) and oQCD corresponding to three effective flavours. 
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understand this difference it is useful to take M2 > rnf and set rnz = 0 in Eqs. 

(17)-(19). This gives 

it42 
(A? 1 Q(M) I K’) = 4 F;m&[l - (4r;Kj2(2M2 - fmhln-g)i . (24) 

Now in ref. 15) the usual chiral perturbation theory supplemented by the diien- 

sional regularization has been used. In such an approach the quadratic dependence 

on the physical cut-off is lost so that the functions l;(mf) take the form 

m,t214(mT) = m,213(m:) = 12(m:) = &j+$ 

where ji is the subtraction point. Using Eq. (25) in Eqs. (17)-(19), setting rni = 0 

and dropping the l/A: term, ss it was done in ref. [5] we find (DR = dimensional 

regularization) 

2 
(@“ I Q I K’)]DR = 4 F&r&l - (4~~K)2$$ln!$] (26) 

m2 
= 4 f$+[l - (4~~T12+&h-$ 

where the last equation follow* use of Eq. (7). 

(27) 

The correction term in the parenthesis of Eq. (27) agrees precisely with the 

corresponding term in Eq. (25) of ref. [515). For 5 = O(1GeV) the correction 

term in Eq. (27) is O(lSO%) indicating a breakdown of chiral perturbation theory. 

On the other hand as seen in Eq. (26) a substantially smaller correction 0(50%) 

is obtained if fn is expressed in terms of the physical kaon decay constant. In 

any caSe the corrections in Eqs. (26) and (27) are substantially larger than the 

ones given in Eq. (24) where the quadratic dependence on the physical cut-off 

has been kept. Indeed the quadratic and logarithmic dependences on M cancel 

each other to large extent in Eq. (24) so that not only is the correction small but 

in addition the M dependence of (P 1 Q(M) ( K”) is weak in contrast to the 

strong fi dependence seen in Eqs. (26) and (27). This weak M dependence of 

(zO ( Q(M) ] K”) is consistent with the weak ,LJ = M dependence of the short 

5)In ref. [5]j = Jzf= 



distance factor in Eq. (1) (a small anomalous dimension of the operator 8) so 

that a nearly M independent result for B can be obtained. 

It should be emphasized that the M2 dependence in Eq. (24) is exactly the 

same as in the hadronic matrix element entering the AI = 3/2 amplitude A(@ + 

a+?r”) . However the logarithmic contributions to the latter amplitude are smaller 

than the ones in Eq. (24). Consequently the loop corrections further suppress the 

Al = 3/2 amplitude es desired without affecting considerably the leading order 

result for B. 

From the point of view of our approach the dimensional regularization makes 

extra infrared subtractions of quadratically divergent terms. These subtractions 

are not permitted in the full integration of the loop contributions to the truncated 

theory. As we have just seen the quadratic dependence on the physical cut-off 

stabilizes the l/N expansion and was also an essential ingredient in the matching 

of the meson and quark pictures. It should also be emphasized that this quadratic 

dependence is fully consistent with chiral symmetry (191. 
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/rW’l Bb21 B(Agco = 0.2 GeV) B(Aqco = 0.3 GeV) 

0.6 0.68 0.77 0.68 

0.7 0.64 0.75 0.67 

0.8 0.58 0.70 0.64 

Table 1 : The values of B(p2) and B for various values of fi = M and AQCD 

Figure captions 

Fig. 1 The tree diagram contributing to the matrix element (I?“ 1 Q 1 P). The 

solid square represents the operator Q with the current (gd)y-A given in 

Eq. (5). 

Fig. 2 The one-loop diagrams contributing to the matrix element (r?-O ( Q ( If“). 

The solid square in Fig. 2a represents the vertex of Eq. (15). The solid 

circle in Fig. 2b is the vertex of Eq. (16). 
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